SLOTD 4.0

Mit SLOTD4.0 entsteht eine neue Generation von Kleinsatellitensystemen. Während bei konventionellen Systemen die Nutzlast und der Satellitenbus, die Kontroll und Versorgungseinheit eine Satelliten, meist in einer monolithischen Struktur verbaut ist, werden sie bei SLOTD4.0 strukturell entkoppelt und mit Hilfe einer multifunktionalen Schnittstelle verbunden. Als Schnittstelle dient das intelligent Space System Interface (iSSI), welches für mechanische Kopplung sowie für die Übertragung von Strom und Daten zwischen Bus und Nutzlastmodul sorgt. Durch den modularen Aufbau des Satelliten im SLOTD4.0-Konzept wird eine enorme Flexibilität durch alle Projektphasen hindurch, vom Entwurf über die Herstellung und Integration bis zum Launch und dem Betrieb des Systems im Orbit geschaffen. Darüber hinaus ermöglicht SLOTD4.0 einen kostengünstigen Zugang zum Weltraum, insbesondere für IOD/IOV-Nutzlasten. Satellitenbus, Nutzlastmodul sowie Kopplungsschnittstelle können standardisiert werden und schaffen damit Potential für eine deutliche Kostensenkung bei Fertigung und Integration. Ein universaler Satellitenbus deckt ein breites Spektrum von Nutzlastanforderungen ab und ermöglicht damit die Umsetzung einer Vielzahl von Missionsszenarien unabhängig von der mitzuführenden Nutzlast. Das wird vor allem durch den Einsatz von im Orbit rekonfigurierbarer Software erreicht, die in letzter Konsequenz einen Software Defined Satellite ermöglichen wird. Das Nutzlastmodul selbst enthält standardisierte Montagepunkte sowie Anbindungen für Datenübertragung und Stromversorgung zur Integration der Nutzlast, die das Ziel verfolgen den Engineering Aufwand zu reduzieren und damit schon in der Satellitenentwicklung Kosten einzusparen.

With SLOTD4.0, a new generation of small satellite systems is emerging. While in conventional systems the payload and the satellite bus, the control and supply unit of a satellite, are usually built into a monolithic structure, in SLOTD4.0 they are structurally decoupled and connected by means of a multifunctional interface. The intelligent Space System Interface (iSSI) serves as the interface, which provides for mechanical coupling as well as for the transmission of power and data between bus and payload module. The modular design of the satellite in the SLOTD4.0 concept creates enormous flexibility throughout all project phases, from design, manufacturing and integration to launch and operation of the system in orbit. Furthermore, SLOTD4.0 enables a cost-effective access to space, especially for IOD/IOV payloads. Satellite bus, payload module as well as coupling interface can be standardized and thus create potential for a significant cost reduction in manufacturing and integration. A universal satellite bus covers a wide range of payload requirements and thus enables the implementation of a multitude of mission scenarios independent of the payload to be carried. This will be achieved primarily through the use of in-orbit reconfigurable software, which will ultimately enable a Software Defined Satellite. The payload module itself contains standardized mounting points as well as connections for data transmission and power supply for the integration of the payload.

Based on industry 4.0 processes in combination with innovation strategies, a software-supported end-to-end service will be modelled and developed using guided processes. The product lifecycle phases of the modular satellite bus from order placement and procurement to manufacturing and operation are thus mapped. By optimizing processes and bridging the gap between business, regulatory and communication aspects, new potential is discovered and released. Based on a diversified result, cloud-based software is developed that takes overlapping user needs into account. Such an environment supports the secure and centralized management of all customer and mission relevant information. This enables the collection, processing and exchange of all technical specifications and requirements in an automated, simplified and standardized way. More specifically, the dedicated algorithm automatically determines the compatibility of the payloads with the characteristics of the hosting satellite. The algorithm also identifies missing or incompatible properties for payload customers, thus creating an early awareness of feasibility.

Market uncertainties and long implementation cycles are identified based on several selected potential payloads in order to assess the associated market needs.

The feasibility of the concept is demonstrated by means of a microsatellite in 16U-CubeSat format (approx. 20x20x40cm in size). This is separated into a satellite bus and a payload module with a volume of 8U each. Both parts are each equipped with an iSSI. The iSSI interface will be adapted functionally and structurally to the requirements resulting from an application for modularization of microsatellites. In combination with consistent lightweight construction on the primary structure of the payload module, the increase in mass associated with modularization is minimized.
The SLOTD4.0 concept is a novel approach to modularization and standardization. The decoupling of satellite bus and payload creates a new level of flexibility and cost efficiency in manufacturing and integration. Standardization and qualification of payload modules and the universal satellite bus also reduces mechanical tests and environmental simulations to component and subsystem level of the payload. In addition, increased flexibility in the mission sequence is created, as payload modules can be exchanged and replaced until shortly before launch.